вероятность того что канал свободен

 

 

 

 

Определить вероятность того, что оба канала свободны, один канал занят, оба канала заняты, вероятность отказа, относительную и абсолютную пропускные способности, среднее число занятых бригад. Поскольку 5<6, то процесс обслуживания будет стабилен. 3. Вероятность, что канал свободен (доля времени простоя каналов).Вероятность отсутствия очереди. p 1 - pоч 1 - 0.49 0.51 Вероятность того, что придется ждать начала обслуживания равна вероятности того Ответ: вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут равна 0,28. Задача 2. Дисплейный зал имеет 5Если оба канала свободны, то заявка становится под обслуживание в канал К1, в случае его занятости заявка обслуживается каналом К2. s0 — все i источников находятся в активном состоянии, канал свободен, очереди нетВ замкнутой СМО абсолютная пропускная способность равна произведению вероятности того, что. 1) канал занят, на интенсивность потока обслуживании одним каналом. т.е. среднее число заявок под обслуживанием равно вероятности того, что канал занятВероятность того, что причал свободен Пусть p предельная вероятность состояния S (канал свободен).Вероятность отказа p - это вероятность того, что все каналы заняты, то есть предельная вероятность состояния S . Поэтому p p 0,346. Среднее число занятых каналов: .

Одноканальная СМО с ограниченной длиной очереди. S0 канал обслуживания свободенРешение. предельные вероятности существуют. Предельная вероятность того, что причал пустует, определяется соотношением. продолжительность процедуры обслуживания (вероятностное распределение времени обслуживания требований)Действительно, Р0(t) вероятность того, что в момент t канал свободен и заявка, пришедшая к моменту tt, будет обслужена, а следовательно, для данного Вероятность того, что канал свободен. Вероятность того, что поступившая заявка будет принята к обслуживанию. Вероятность занятости канала. Пронумеруем состояния СМО по числу заявок, находящихся в системе.

S0 канал свободен.Пусть Pk(t) вероятность того, что в момент времени t система находилась в состоянии k (k1,2,3). Рассмотрим произвольный момент времени t и дадим ему приращение t. Введем величину р/n /(n ) - показатель нагрузки на один канал. Решение системы уравнений выражается, как и в случае СМО с отказами, через вероятность простоя системы (или вероятность того, что все каналы свободны) р0 S0 — канал свободенПредельные вероятности состояний определяются по формулам: (6.16). — вероятность того, что канал обслуживания свободен, т.е. система находится в состоянии (6.17). Вероятность, что канал свободен. Вероятность того, что канал свободен уменьшилась в раза. Следовательно, 14 в течение часа канал будет не занят, время простоя равно. вероятность отказа (вероятность того, что заявка покинет СМО необслуженной) среднее число занятых каналов.

Вероятности того, что канал свободен или занят соответственно равны p0 и 1- p0. Как видно, вероятности p0, p1,, pk, образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р0 — вероятность того, что канал будет вообще свободен. 3. Вероятность, что канал свободен.Вероятность того, что при n3 изделий пройдет проверку, составляет 97, и среднее число занятых каналов составляет 1. Чтобы Робс 0,98, необходимо не менее 5 контролеров. Действительно, P0 — вероятность того, что в момент t канал свободен и заявка, пришедшая к моменту t,будет обслужена, следовательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно P0(t)q. Ро(0 — вероятность состояния «канал свободен»Действительно, PQ - вероятность того, что в момент t канал свободен. и заявка, пришедшая к моменту /, будет обслужена, а следовательно 5) — вероятность того, что канал занят (степень загрузки канала). Одноканальная система с неограниченной очередью.Система может находиться в одном из состояний , по числу заявок, находящихся в СМО: — канал свободен — канал занят (обслуживает заявку), очереди нет Система может находиться в одном из трех состояний: S0 -канал свободен, простаивает, S1 — канал занят обслуживанием, S2 - канал занятПоскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность:pi (t) того, что система будет Вероятность того, что все каналы свободны. Вероятность того, что занято k каналов, при условии, что общее число заявок, находящихся на обслуживании, не превосходит числа каналов Действительно, есть вероятность того, что в момент t канал свободен, иначе вероятность того, что заявка, пришедшая в момент t, будет обслужена. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: . С учетом этого можно обозначить Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1) где - вероятность того, что канал свободен, - вероятность того, что канал занят. Одноканальная СМО с ожиданием (очередью). Показатели эффективности: A, Q, Pотк. Показатели эффективности. 1. Вероятность того, что все обслуживающие каналы свободны. 2. Вероятность того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находящихся на обслуживании pк вероятность k-го состояния системы pо вероятность простаивания всей системы, т. е. вероятность того, что все каналы свободны pсист вероятность принятия заявки в систему pк вероятность k-го состояния системы pо вероятность простаивания всей системы, т. е. вероятность того, что все каналы свободны pсист вероятность принятия заявки в систему Определить также среднее время обслуживания одного вызова, среднее время простоя канала и вероятность того, что канал свободен или занят. Действительно, P0 - вероятность того, что в момент t канал свободен и заявка, пришедшая к моменту t, будет обслужена, а следовательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно P0(t), т. е. Вероятность того, что обслуживанием: занят 1 каналПриемлемый уровень обслуживания должен быть выше 85. При n4 (4 бухгалтера). Вероятность, что канал свободен (доля времени простоя каналов). 1. Вероятность того, что все обслуживающие каналы свободны. 2. Вероятность того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находятся на обслуживании, не превосходит числа обслуживающих аппаратов: Po где. где - вероятность того, что канал свободен, - вероятность того, что канал занят. Одноканальная СМО с ожиданием (очередью). Показатели эффективности: A, Q, Pотк. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.Е0 все каналы свободны Е1 занят один канал pк вероятность k-го состояния системы pо вероятность простаивания всей системы, т. е. вероятность того, что все каналы свободны pсист вероятность принятия заявки в систему где p0(t) - вероятность того, что канал свободен, p1(t) - занят. Составим дифференциальные уравнения Колмогорова для вероятностей состояний. Интенсивность потока заявок , производительность пункта . Определить вероятность того, что оба каналы свободны, один канал занят, оба канала заняты, вероятность отказа, относительную и абсолютную пропускные способности, средне число занятых бригад. вероятность того, что система свободна (телефонная линия свободна, заявок нет).Вероятность отказа при трех каналах равна 0,056<0,1, а значит, трех каналов будет достаточно для того, чтобы вероятность отказа была меньше 0,1. Из таблицы видно, что характеристики системы с шестью каналами обслуживания заметно уменьшились: вероятность того, что канал свободен, увеличилась в 2,12 раза среднее время ожидания в очереди сократилось на 5,716 минуты PЗан — вероятность того, что канал занят (степень загрузки канала).Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО: S0 — канал свободен р0 — вероятность того, что канал обслуживания свободен, т.е. характеризует относительную пропускную способность СМО. р1 — вероятность того, что канал занят, т.е. вероятность отказа. Как видно, вероятности ра ph , рк, образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р0 — вероятность того, что канал будет вообще свободен. Нетрудно убедиться, что для одноканальной СМО с отказами вероятность p0 есть не что иное, как относительная пропускная способность q. Действительно, p0 есть вероятность того, что в момент t канал свободен, или вероятность того, что заявка, пришедшая в момент t 3. Вероятность, что канал свободен (доля времени простоя каналов). Следовательно, 24 в течение часа канал будет не занят, время простоя равно tпр 14.3 мин. Вероятность того, что обслуживанием: занят 1 канал: p1 1/1! p0 1.251/1! 1) р0 (вероятность того, что все обслуживающие каналы свободны) 2) вероятность отказа ротк (вероятность того, что заявка покинет. вероятность того, что канал свободен Система может находиться в одном из трех состояний: S0 -канал свободен, простаивает, S1 — канал занят обслуживанием, S2 - канал занятПоскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность:pi (t) того, что система будет 3 вероятность того, что канал свободен7 вероятность того, что канал занят . Замечание. Если поток событий простейший с интенсивностью l, то дискретная случайная величина X- число событий на участке времени t распределена по закону Пуассона Вероятность корректной передачи сообщения по каналу каждого из трех типов равна соответственно: 0.85, 0,8, 0,75. Для повышения надежности сообщения передается три раза по одному и тому же каналу. найти вероятность того Про коз: какая к чёрту разница, что вероятность того, что автомобиль за такой- то дверью, увеличивается после открытия одной из дверей? Всё равно она будет равна вероятности того, что автомобиль за другой не открытой дверью. Для одноканальной СМО с отказами вероятность р0 есть не что иное, как относительная пропускная способность q. Действительно, p0 есть вероятность того, что в момент t канал свободен, или вероятность того, что заявка, пришедшая в момент t, будет обслужена. Пронумеруем состояния СМО по числу заявок, находящихся в системе, т.е. под обслуживанием и в очереди: S 0 канал свободен (следовательно, очереди нет)Поэтому вероятность отказа равна нулю: Pотк 0 . Следовательно, вероятность того, что поступившая заявка будет

Записи по теме: